Sean Hon's Homepage


  1. S. Hon, Optimal block circulant preconditioners for non-Hermitian block Toeplitz systems, submitted.
  2. S. Hon and A. Wathen, Band-Toeplitz preconditioners for ill-conditioned nonsymmetric Toeplitz systems, submitted.
  3. S. Hon, Circulant preconditioners for analytic functions of Hermitian Toeplitz matrices, Journal of Computational and Applied Mathematics, 352:328-340, 2019.
  4. P. Ferrari, I. Furci, S. Hon, M. Mursaleen, and S. Serra-Capizzano, The eigenvalue distribution of special 2-by-2 block matrix sequences, with applications to the case of symmetrized Toeplitz structures, ArXiv e-prints, 2018.
  5. S. Hon, M. Mursaleen, and S. Serra-Capizzano, A note on the spectral distribution of symmetrized Toeplitz sequences, ArXiv e-prints, 2018.
  6. S. Hon, Preconditioning for Toeplitz-related systems, DPhil thesis, University of Oxford, 2018.
  7. S. Hon, Optimal preconditioners for systems defined by functions of Toeplitz matrices, Linear Algebra and its Applications, 548:148-171, 2018.
  8. M. Hammerschmidt, J. Pabisiak, A. Perez-Gea, N. Julian, S. Hon, and S. Burger, Efficient finite-element-based numerical modelling of large sub-wavelength patterned optical structures, Proc. SPIE 10542, High Contrast Metastructures VII, 105421G, 2018.
  9. S. Hon and A. Wathen, Circulant preconditioners for analytic functions of Toeplitz matrices, Numerical Algorithms, 79:1211-1230, 2018.
  10. E. McDonald, S. Hon, J. Pestana, and A. Wathen, Preconditioning for nonsymmetry and time-dependence, pages 81-91. Springer International Publishing, Cham, 2017.
  11. K. Siegel, K. Altenburger, Y. Hon, J. Lin, and C. Yu, PuzzleCluster: a novel unsupervised clustering algorithm for binning DNA fragments in metagenomics, Current Bioinformatics, vol. 10, pp. 3-13, 2015.
  12. S. Hon, S. Leung, and H. Zhao, A cell based particle method for modeling dynamic interfaces, Journal of Computational Physics, 272:279-306, 2014.